Learning to Exploit Structured Resources for Lexical Inference
Vered Shwartz, Omer Levy, Ido Dagan and Jacob Goldberger

1. Lexical Inference

Task: Identifying Lexical Inference
- Inferring the meaning of one term from another: cat → animal
- Useful in many NLP applications

Prior Methods:
- Corpus-based: high recall, limited precision
- Resource-based:
 - Usually based on WordNet - manual selection of WordNet relations, high precision
 - Limited recall. Missing:
 - recent terminology (social network)
 - proper-names (Lady Gaga)

Goal: high-precision resource-based method with improved recall
Means: community-built resources:

We look at paths connecting x, y in resource graph

Which edge types are indicative of the target lexical inference relation?
Challenge: manual selection is infeasible — thousands of relations to choose from!
Solution: learn an optimal subset of edge types for a certain target relation

2. Structured Resources

- We use knowledge resources:
 - WordNet
 - Diederik
 - Yago
 - BibNet
 - DBpedia
 - Freebase

- Knowledge resource is a graph:
 - Nodes: terms / concepts
 - Edges: concept-term / semantic edges between concepts

3. Learning

Input: annotated dataset of term-pairs
- Defining a lexical-semantic relation R (e.g. “is a”)

Task: Given a new term-pair (x, y), predict whether xRy

Parameter: whitelist of indicative edge types $w = \{\text{instance-of, occupation, subclass-of, ...}\}$

Inference:
- A path is indicative if all its edge types are whitelisted.
- A term-pair is positive if at least one of its paths is indicative.

Training:
- Learn optimal whitelist (optimize F_{β} on train set)
- Subset selection problem - Genetic Search

4. Evaluation

1. Can we replicate WordNet-based methods for common nouns?
 - Using WordNet as the only resource
 - Baseline: 4 manual whitelists based on the literature

 - Our method replicates the best whitelist on each dataset

2. Can we extract inferences over proper-names from community-built resources?
 - Improved recall over WordNet on our proper-names dataset
 - Maintains high precision (p=97%, r=29%)

 - Interesting whitelist (44 edge types):

3. How is our method compared to corpus-based methods?
 - Baseline: state-of-the-art distributional methods: word2vec (Mikolov et al., 2013) + concatenation (Baroni et al.,2012)
 - Corpus-based method: higher recall, lower precision

 - Our method complements corpus-based methods

5. Contribution

- Supervised framework for automatically selecting an optimized subset of resource relations for a given target inference task.
- Enables the use of large-scale resources, providing a rich source of high-precision inferences over proper-names.
- Available to download: https://github.com/vered1986/LinKeR